Remarks on fractional derivatives

نویسندگان

  • Changpin Li
  • Weihua Deng
چکیده

In this paper, we further discuss the properties of three kinds of fractional derivatives: the Grünwald–Letnikov derivative, the Riemann–Liouville derivative and the Caputo derivative. Especially, we compare the Riemann–Liouville derivative with the Caputo derivative. And sequential property of the Caputo derivative is also derived, which is helpful in translating the higher fractional-order differential systems into lower ones. Besides, we also compare the Riemann–Liouville derivative and the Caputo derivative with the classical derivative. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks About Riemann-Liouville and Caputo Impulsive Fractional Calculus

This paper establishes some closed formulas for RiemannLiouville impulsive fractional integral calculus and also for RiemannLiouville and Caputo impulsive fractional derivatives. Keywords—RimannLiouville fractional calculus, Caputo fractional derivative, Dirac delta, Distributional derivatives, Highorder distributional derivatives.

متن کامل

On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives

In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.

متن کامل

New Boundary Value Problems for Higher Order Impulsive Fractional Differential Equations and Their Solvability

Firstly, the surveys for studies on boundary value problems for higher order ordinary differential equations and for higher order fractional differential equations are given. Secondly a simple review for studies on solvability of boundary value problems for impulsive fractional differential equations is presented. Thirdly we propose four classes of higher order linear fractional differential eq...

متن کامل

A study of a Stefan problem governed with space–time fractional derivatives

This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...

متن کامل

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 187  شماره 

صفحات  -

تاریخ انتشار 2007